

#### QM353: Business Statistics

#### **Chapter 8**

Analyzing and Forecasting Time-Series Data



## **Chapter Goals**

## After completing this chapter, you should be able to:

- Identify the components present in a time series
- Develop and explain basic forecasting models
- Apply trend-based forecasting models, including linear trend, nonlinear trend, and seasonally adjusted trend
- Use smoothing-based forecasting models, including single and double exponential smoothing



## **Examples of Forecasting**

- Governments forecast unemployment, interest rates, and expected tax revenues for policy purposes
- Marketing executives forecast demand, sales, and consumer preferences for strategic planning
- College administrators forecast enrollments to plan for facilities and for faculty recruitment
- Retail stores forecast demand to control inventory levels, hire employees and provide training



## Categories of Forecasting

- Qualitative forecasting techniques
  - Based on statistical methods for analyzing historical data
- Qualitative forecasting techniques
  - Based on expert opinion and judgment
  - NOT a gut feel or an unsubstantiated opinions



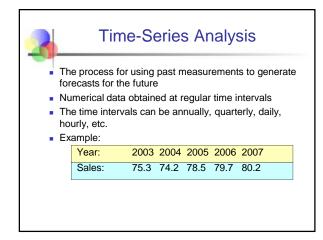
#### Developing a Forecasting Model

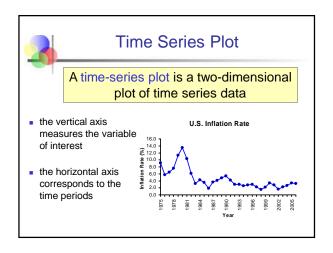
- Steps in forecast modeling (see Chapter 15):
  - model specification
  - model fitting
  - model diagnosis
- Goal: use the simplest available model that meets forecasting needs to provide good forecasts for future performance

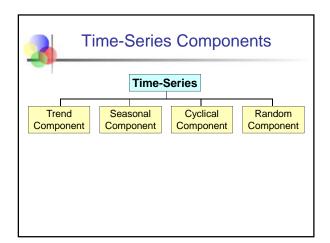


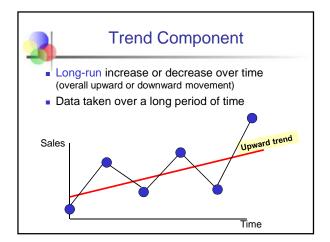
#### Forecasting Horizon

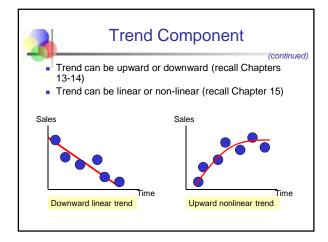
- Forecasting horizon is the lead time necessary (or available) to develop the forecasting model
- Intermediate term less than one month
- Short term one to three months
- Medium term three months to two years
- Long term two years or more
- Forecasting period: the unit of time for which forecasts are to be made
- Forecasting interval: the frequency with which new forecasts are prepared

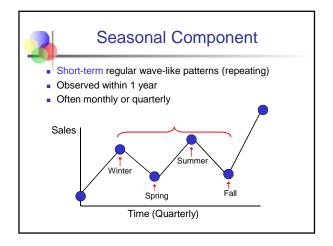










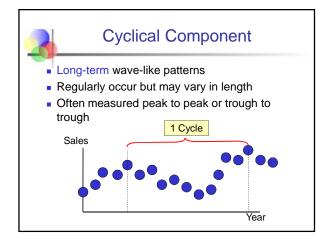




## **Seasonal Component**

(continued

- The pattern itself repeats throughout the time series
- The shortest period of repetition is the recurrence period
  - The recurrence period will be 1 year at MOST
- Examples:
  - Increase in visits to the doctor in the Fall and Winter, decrease in the Spring and Summer
  - Seasonal fluctuation in retails sales around various holidays (Christmas, Mother's Day, etc.)





## **Cyclical Component**

(continued)

- Recurrence period is longer than 1 year
- Sustained periods of highs and lows
- Cycles vary in length and intensity
- Examples:
  - Unemployment rates
  - Stock market indexes
  - New home sales



## Random Component

- Unpredictable, random, "residual" fluctuations
- Will be present in virtually all situations
- Due to random variations of
  - Nature
    - Devastating tornado hits a manufacturing facility
  - Accidents or unusual events
    - Unexpected closing of a large employer in a community
- "Noise" in the time series
  - No discernable pattern



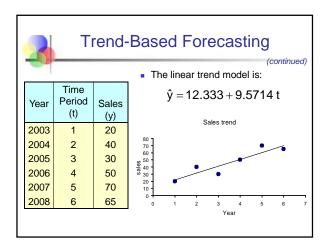
## **Trend-Based Forecasting**

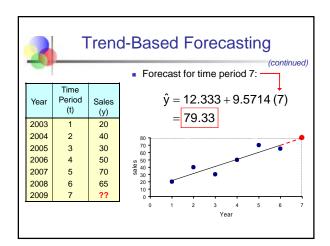
■ Estimate a trend line using regression analysis

| Year | Time<br>Period<br>(t) | Sales<br>(y) |  |  |  |  |  |
|------|-----------------------|--------------|--|--|--|--|--|
| 2003 | 1                     | 20           |  |  |  |  |  |
| 2004 | 2                     | 40           |  |  |  |  |  |
| 2005 | 3                     | 30           |  |  |  |  |  |
| 2006 | 4                     | 50           |  |  |  |  |  |
| 2007 | 5                     | 70           |  |  |  |  |  |
| 2008 | 6                     | 65           |  |  |  |  |  |

Use time (t) as the independent variable:

$$\hat{y} = b_0 + b_1 t$$







## **Comparing Forecast Values** to Actual Data

- The forecast error or residual is the difference between the actual value in time t and the forecast value in time t:
- Error in time t:

$$e_t = y_t - F_t$$



#### Two Common Measures of Fit

Measures of fit are used to gauge how well the forecasts match the actual values (model diagnosis)

- MSE (mean squared error)
  - Average squared difference between y<sub>t</sub> and F<sub>t</sub>
- MAD (mean absolute deviation)
  - Average absolute value of difference between y<sub>t</sub> and F<sub>t</sub>
  - Less sensitive to extreme values
- RMSE (root mean square error)
  - Square root of MSE



#### MSE vs. MAD

Mean Square Error

Mean Absolute Deviation

$$MAD = \frac{\sum |y_t - F_t|}{n}$$

where:

 $y_t$  = Actual value at time t

 $F_t$  = Predicted value at time t

n = Number of time periods



#### Autocorrelation

 Autocorrelation is correlation of the error terms (residuals) over time

Here, residuals show a cyclic pattern, not random Also called serial

correlation

- Time (t) Residual Plot
- Violates the regression assumption that residuals are random and independent



#### **True Forecasts**

- True forecasts are gauged by how well it forecasts future values - not how well it fits historical data
- To determine if the trend model produced a true forecast, you have to wait until the future time actually arrives
  - Can use split samples
- Forecast bias
  - Positive underforecast
  - Negative overforecast



## Nonlinear Trend Forecasting

- A nonlinear regression model can be used when the time series exhibits a nonlinear trend
- One form of a nonlinear model:

$$y_t = {}_0 + {}_1 t + {}_2 t^2 +$$

- Compare R<sup>2</sup> and s to that of linear model to see if this is an improvement
- Can try other functional forms to get best fit



## Finding Seasonal Indexes

#### Ratio-to-moving average method:

- Begin by removing the seasonal and irregular components (S<sub>t</sub> and I<sub>t</sub>), leaving the trend and cyclical components (T<sub>t</sub> and C<sub>t</sub>)
- To do this, we need moving averages

Moving Average: averages of consecutive time series values



## Multiplicative Time-Series Model

- Used primarily for forecasting
- Allows consideration of seasonal variation
- Observed value in time series is the product of components

$$\mathbf{y}_{t} = \mathbf{T}_{t} \times \mathbf{S}_{t} \times \mathbf{C}_{t} \times \mathbf{I}_{t}$$

where

 $T_t$  = Trend value at time t

S<sub>t</sub> = Seasonal value at time t

C<sub>t</sub> = Cyclical value at time t

 $I_t$  = Irregular (random) value at time t



## **Moving Averages**

- Used for smoothing
- Series of arithmetic means over time
- Result dependent upon length of period chosen for computing means
- To smooth out seasonal variation, the number of periods should be equal to the number of seasons
  - For quarterly data, number of periods = 4
  - For monthly data, number of periods = 12



## **Moving Averages**

(continued)

■ Example: Four-quarter moving average

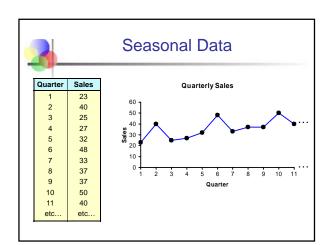
First average:

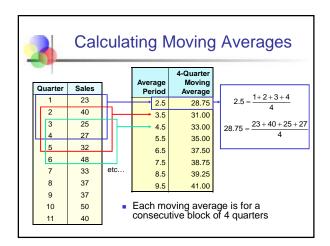
Moving average<sub>1</sub> = 
$$\frac{Q1 + Q2 + Q3 + Q4}{4}$$

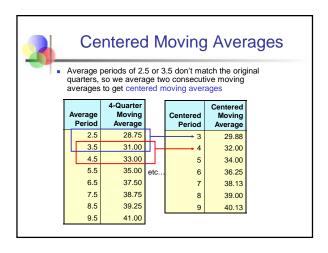
Second average:

Moving average<sub>2</sub> = 
$$\frac{Q2 + Q3 + Q4 + Q5}{4}$$

etc...



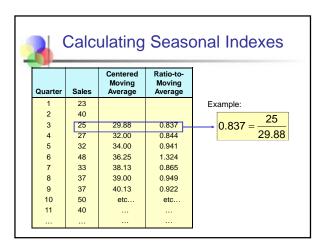


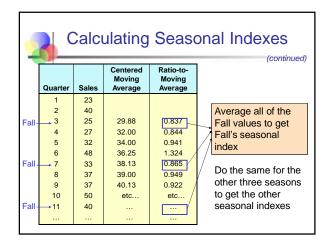


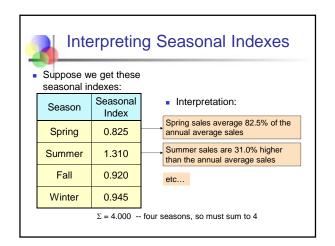


- Now estimate the S<sub>t</sub> x I<sub>t</sub> value
- Divide the actual sales value by the centered moving average for that quarter
- Ratio-to-Moving Average formula:

$$S_t \times I_t = \frac{y_t}{T_t \times C_t}$$









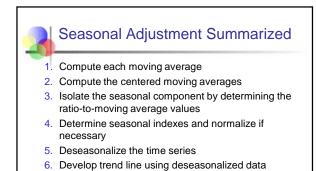
The data is deseasonalized by dividing the observed value by its seasonal index

$$\left| \mathsf{T}_{\mathsf{t}} \times \mathsf{C}_{\mathsf{t}} \times \mathsf{I}_{\mathsf{t}} = \frac{\mathsf{y}_{\mathsf{t}}}{\mathsf{S}_{\mathsf{t}}} \right|$$

This smooths the data by removing seasonal variation

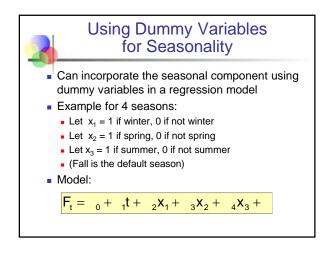
| 4 | Deseasonalizing (continued) |       |                   |                         |                         |  |  |  |  |
|---|-----------------------------|-------|-------------------|-------------------------|-------------------------|--|--|--|--|
|   | Quarter                     | Sales | Seasonal<br>Index | Deseasonalized<br>Sales | Example:                |  |  |  |  |
|   | 1                           | 23    | 0.825             | 27.88                   | → 27.88 = <sup>23</sup> |  |  |  |  |
|   | 2                           | 40    | 1.310             | 30.53                   | 0.825                   |  |  |  |  |
|   | 3                           | 25    | 0.920             | 27.17                   |                         |  |  |  |  |
| l | 4                           | 27    | 0.945             | 28.57                   | etc                     |  |  |  |  |
|   | 5                           | 32    | 0.825             | 38.79                   |                         |  |  |  |  |
|   | 6                           | 48    | 1.310             | 36.64                   |                         |  |  |  |  |
|   | 7                           | 33    | 0.920             | 35.87                   |                         |  |  |  |  |
|   | 8                           | 37    | 0.945             | 39.15                   |                         |  |  |  |  |
|   | 9                           | 37    | 0.825             | 44.85                   |                         |  |  |  |  |
|   | 10                          | 50    | 1.310             | 38.17                   |                         |  |  |  |  |
|   | 11                          | 40    | 0.920             | 43.48                   |                         |  |  |  |  |
| l |                             |       |                   |                         |                         |  |  |  |  |
|   |                             |       |                   |                         |                         |  |  |  |  |

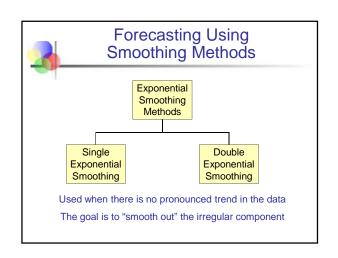




Develop unadjusted forecasts using trend projection

8. Seasonally adjust the forecasts







## **Exponential Smoothing**

- Assumes most recent data is more indicative of possible future values
- Current observations can be weighted more heavily than older observations
- The forecast developed reflect the current data more
- Good for short term forecasting and for time series that are not seasonal



## Single Exponential Smoothing

- A weighted moving average
  - Weights decline exponentially
  - Most recent observation weighted most
- Used for smoothing and short term forecasting
- Easy to update



## Single Exponential Smoothing

(continued

- The weighting factor is n
  - Subjectively chosen
  - Range from 0 to 1
  - Smaller r gives more smoothing, larger r gives less smoothing
- The weight is:
  - Close to 0 for smoothing out unwanted cyclical and irregular components
  - Close to 1 for forecasting



## **Exponential Smoothing Model**

Single exponential smoothing model

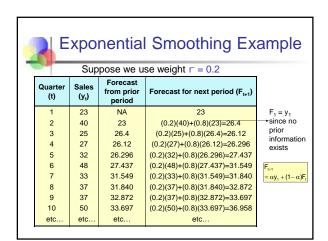
$$\mathbf{F}_{t+1} = \mathbf{F}_t + \alpha(\mathbf{y}_t - \mathbf{F}_t)$$

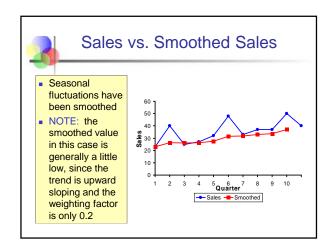
or:

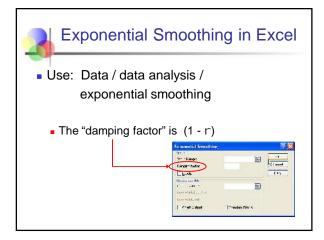
$$F_{t+1} = \alpha y_t + (1 - \alpha) F_t$$

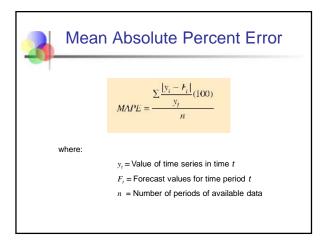
where:

 $F_{t+1}$ = forecast value for period t + 1  $y_t$  = actual value for period t  $F_t$  = forecast value for period t  $\alpha$  = alpha (smoothing constant)









# Chapt

## **Chapter Summary**

- Discussed the importance of forecasting
- Addressed component factors present in the time-series model
- Described least square trend fitting and forecasting
  - linear and nonlinear models
- Performed smoothing of data series
  - moving averages
  - single and double exponential smoothing