

Chapter Goals

After completing this chapter, you should be able to:

- Define the concept of sampling error
- \blacksquare Determine the mean and standard deviation for the sampling distribution of the sample mean, \overline{x}
- Determine the mean and standard deviation for the sampling distribution of the sample proportion, \(\overline{p}\)
- Describe the Central Limit Theorem and its importance
- Apply sampling distributions for both \bar{x} and \bar{p}

Chapter Goals

(continued)

- Distinguish between a point estimate and a confidence interval estimate
- Construct and interpret a confidence interval estimate for a single population mean using both the z and t distributions
- Form and interpret a confidence interval estimate for a single population proportion

Sampling Error

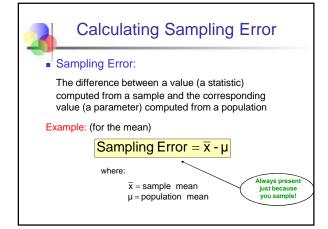
 Sample Statistics are used to estimate Population Parameters

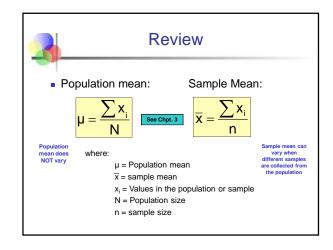
ex: $\overline{\chi}$ is an estimate of the population mean, μ

Problems

- Different samples provide different estimates of the population parameter
- Sample results have potential variability, thus sampling error exits

Recall: With a random sample the goal is to gather a representative group from the population





Example

If the population mean is $\mu=98.6$ degrees and a sample of n = 5 temperatures yields a sample mean of $\overline{\chi}=99.2$ degrees, then the sampling error is

$$\bar{x} - \mu = 99.2 - 98.6 = 0.6$$
 degrees

Sampling Errors

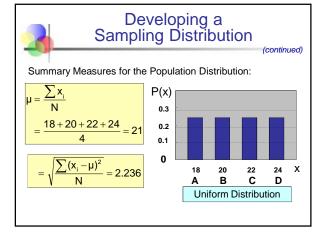
- Different samples will yield different sampling errors
- The sampling error may be positive or negative
 (x̄ may be greater than or less than μ)
- The size of the error depends on the sample selected
 - i.e., a larger sample does not necessarily produce a smaller error if it is not a representative sample

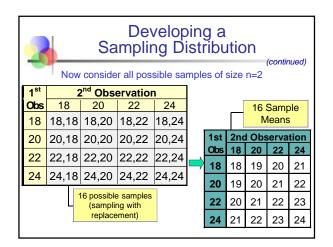
Sampling Distribution

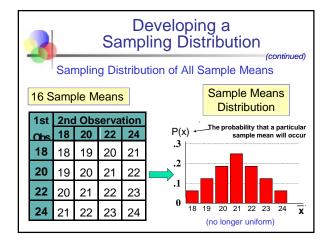
A sampling distribution is a distribution of the probability of_possible values of a statistic for a given size sample selected from a population

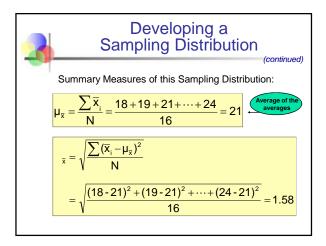
Developing a Sampling Distribution

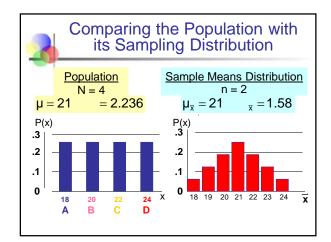
- Assume there is a population ...
- Population size N=4
- Random variable, x, is age of individuals
- Values of x: 18, 20, 22, 24 (years)

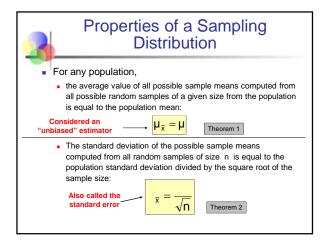






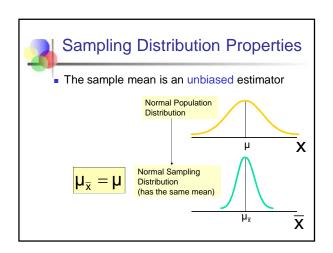


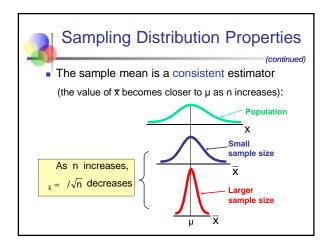


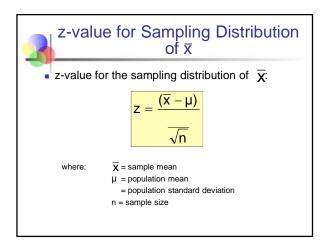


If the Population is Normal

If a population is normal with mean μ and standard deviation , the sampling distribution of $\overline{\chi}$ is also normally distributed with $\mu_{\overline{\chi}} = \mu$ and $\overline{\chi} = \sqrt{n}$ Theorem 3







Finite Population Correction

- Apply the **Finite Population Correction** if:
 - The sample is large relative to the population (n is greater than 5% of N)

and..

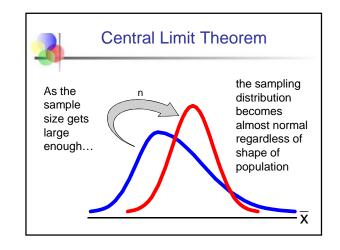
Sampling is without replacement

Then

$$z = \frac{(\overline{x} - \mu)}{\sqrt{n} \sqrt{\frac{N - n}{N - 1}}}$$

Using the Sampling Distribution For Means

- 1. Compute the sample mean
- 2. Define the sampling distribution
- Define the probability statement of interest
- 4. Convert sample mean to a z-value
- 5. Find the probability from the standard normal table (Appendix D)



How Large is Large Enough?

- For most distributions, n > 30 will give a sampling distribution that is nearly normal
- For fairly symmetric distributions, n > 15 is sufficient
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Example

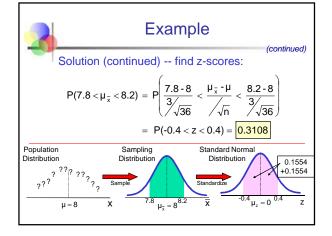
- Suppose a population has mean µ = 8 and standard deviation = 3 and random sample of size n = 36 is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?

Example

(continued)

Solution:

- Even if the population is not normally distributed, the central limit theorem can be used (n > 30)
- ... so the sampling distribution of \overline{X} is approximately normal
- ... with mean $\mu_{\overline{x}} = \mu = 8$
- ...and standard deviation $\bar{x} = \frac{3}{\sqrt{n}} = \frac{3}{\sqrt{36}} = 0.5$

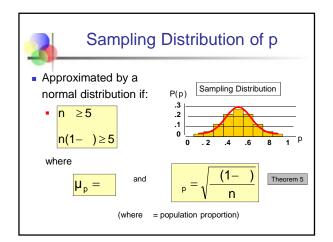


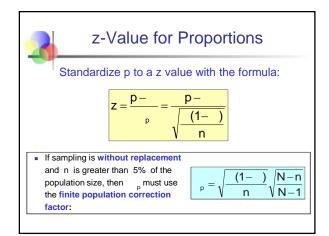
Population Proportions,

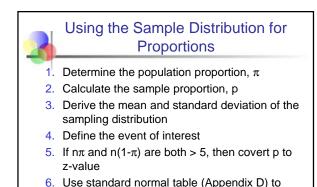
- = the proportion of the population having some characteristic
- Sample proportion (p) provides an estimate of :

 $p = \frac{x}{n} = \frac{\text{number of successes in the sample}}{\text{sample size}}$

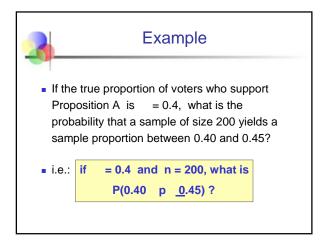
If two outcomes, p is a binomial distribution

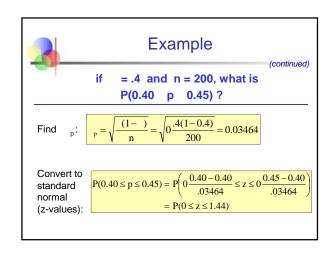


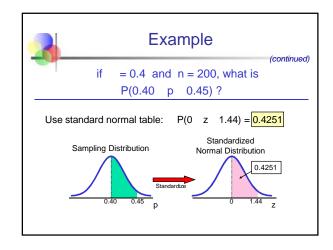


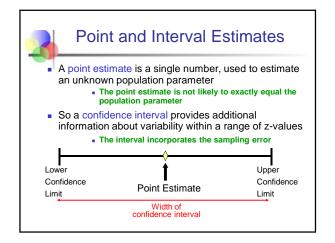


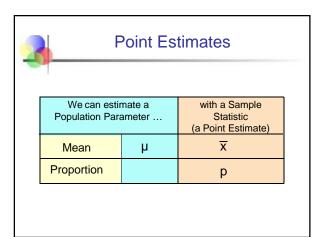
determine the probability

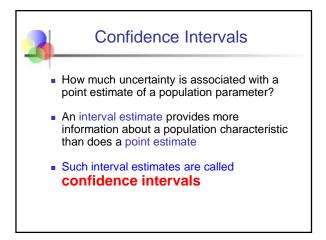


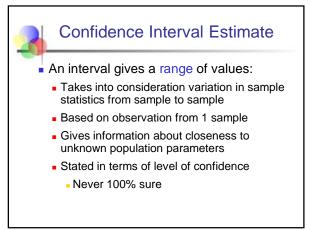


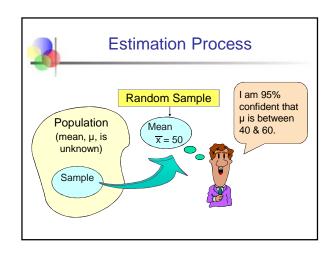


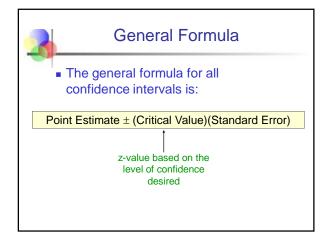


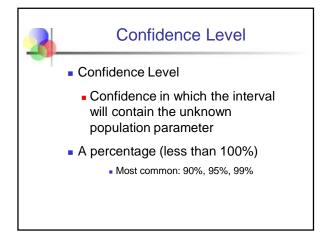


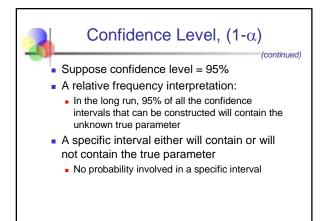


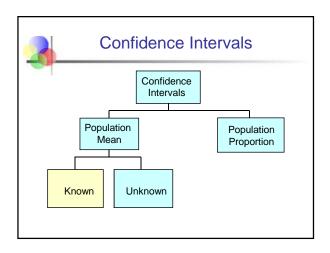


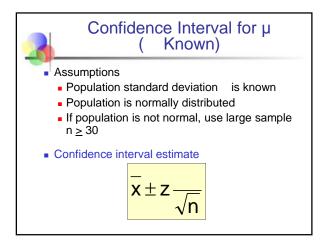


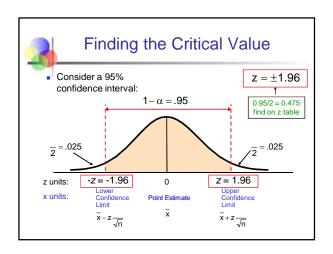


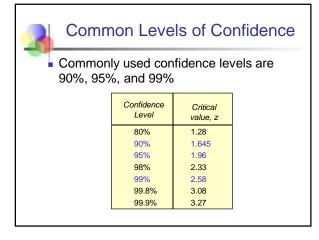


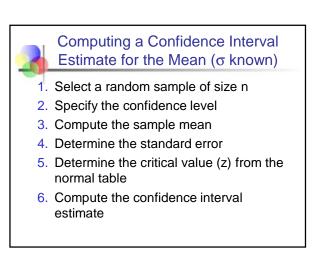


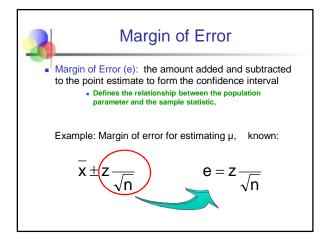


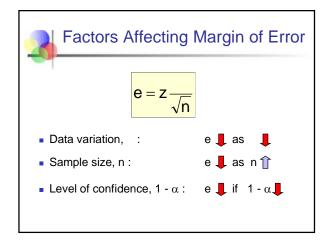


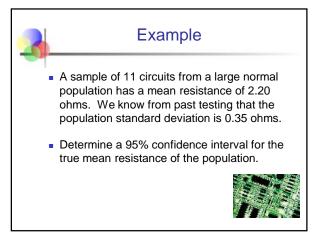


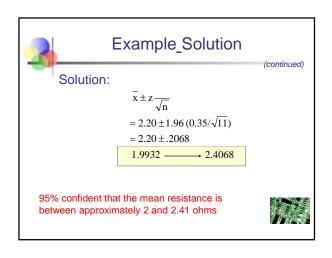


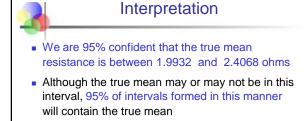


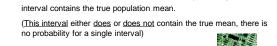




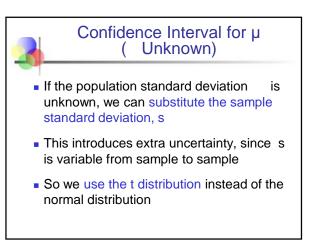


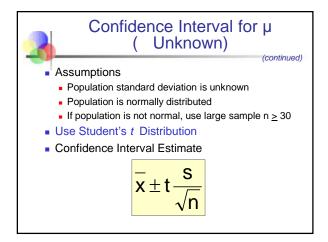


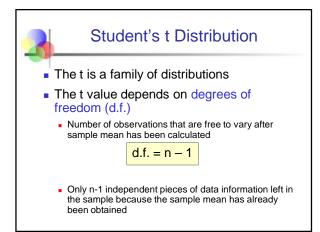


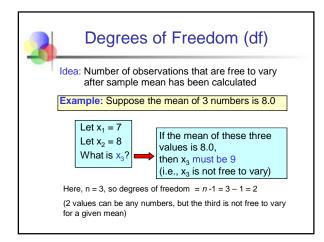


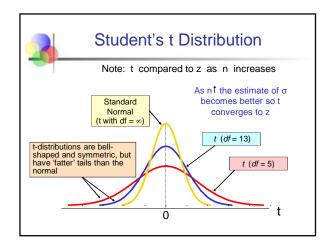
An incorrect interpretation is that there is 95% probability that this

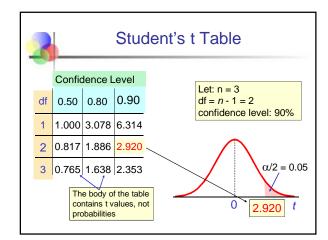


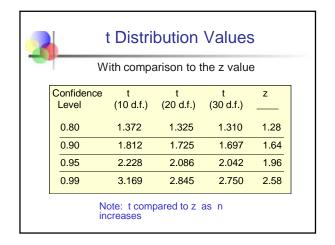


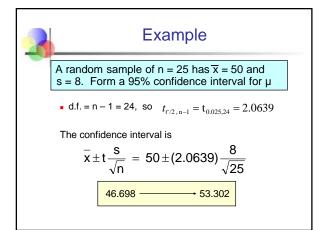


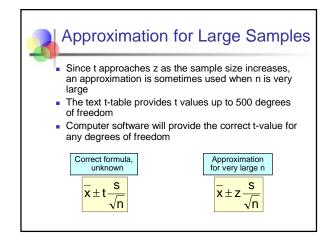






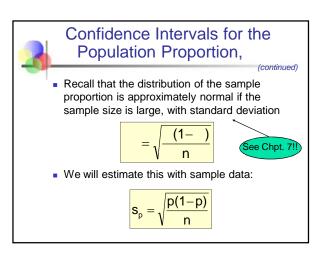






Confidence Intervals for the Population Proportion,

 An interval estimate for the population proportion () can be calculated by adding an allowance for uncertainty to the sample proportion (p)



Confidence Interval Endpoints

 Upper and lower confidence limits for the population proportion are calculated with the formula

$$p \pm z \sqrt{\frac{p(1-p)}{n}}$$

- where
 - z is the standard normal value for the level of confidence desired
 - p is the sample proportion
 - n is the sample size

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers

Example

(continued

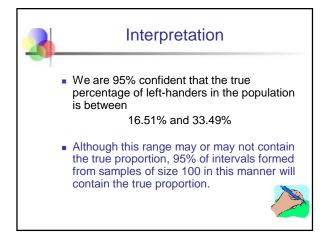
 A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

1.
$$p = 25/100 = 0.25$$

2.
$$S_p = \sqrt{p(1-p)/n} = \sqrt{0.25(0.75)/100} = 0.0433$$

3. $0.25 \pm 1.96 (0.0433)$

 $0.1651 \longrightarrow 0.3349$

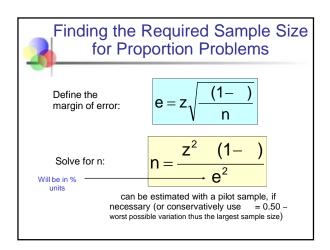


Changing the sample size

 Increases in the sample size reduce the width of the confidence interval.

Example:

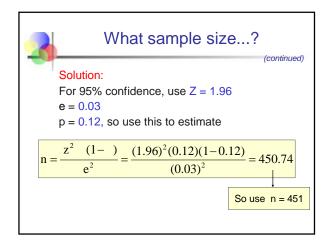
 If the sample size in the above example is doubled to 200, and if 50 are left-handed in the sample, then the interval is still centered at 0.25, but the width shrinks to



What sample size...?

How large a sample would be necessary to estimate the true proportion defective in a large population within 3%, with 95% confidence?

(Assume a pilot sample yields p = 0.12)



Chapter 2 Summary

- Discussed sampling error
- Introduced sampling distributions
- Described the sampling distribution of the mean

 - For normal populations
 Using the Central Limit Theorem (normality unknown)
- Described the sampling distribution of a proportion
- Calculated probabilities using sampling distributions
- Discussed sampling from finite populations

Chapter 2 Summary

(continued)

- Discussed point estimates
- Introduced interval estimates
- Discussed confidence interval estimation for the mean [known]
- Discussed confidence interval estimation for the mean [unknown]
- Discussed confidence interval estimation for the proportion
- Addressed determining sample size for proportion problems

Business Statistics: QM353