QM353: Business Statistics

Chapter 8

16-2. Provide an example of a business decision that requires (1) a short-term forecast, (2) a medium-term forecast, and (3) a long-term forecast.

16-25. Examine the following quarterly data:

t	1	2	3	4	5	6	7	8	9	10	11	12
y_t	2	12	23	20	18	32	48	41	35	52	79	63

- a. Compute the four-period moving averages for this set of data.
- b. Compute the centered moving averages from the moving averages of part a.
- c. Compute the ratio-to-moving-averages values.
- d. Calculate the seasonal indexes. Normalize them if necessary.
- e. Deseasonalize the time series.
- f. Produce the trend line using the deseasonalized data.
- g. Produce seasonally adjusted forecasts for each of the time periods 13, 14, 15, and 16.

16-34. The following table represents two years of data:

Year 1		Year 2			
1st quarter	242	1st quarter	272		
2nd quarter	252	2nd quarter	267		
3rd quarter	257	3rd quarter	276		
4th quarter	267	4th quarter	281		

a. Prepare a single exponential smoothing forecast for the first quarter of year 3 using an alpha value of 0.10. Let the initial forecast value for quarter 1 of year 1 be 250.

b. Prepare a single exponential smoothing forecast for the first quarter of year 3 using an alpha value of 0.25. Let the initial forecast value for quarter 1 of year 1 be 250.

c. Calculate the MAD value for the forecasts you generated in parts a and b. Which alpha value provides the smaller MAD value at the end of the 4th quarter in year 2?